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Abstract—Analytical investigations of impact absorption of linear and isothermal viscoelastic
materials are described. Three methods based on different considerations and approximations are
studied, and similarities are shown in their results. For a viscoelastic buffer of a given thickness, the
optimal loss tangent is determined to be approximately one. Greater reductions in impact force can
be achieved if the high loss is accompanied by stiffness reduced by a factor of three to four compared
with that of an elastic buffer. If the impactor is spherical rather than flat, a higher loss tangent, of
the order of 10, is needed to minimize the impact force. A more sophisticated interpretation scheme
for the ball rebound test for screening the loss tangent of viscoelastic materials is derived.

NOMENCLATURE
m the mass of the impactor or indenter
U(r) the displacement of the mass m or indenter
F(1) the impact force
t time
Unax the maximum displacement of the mass m or indenter
Frux the maximum impact force
E the axial modulus of the one-dimensional elastic buffer
b, c cross-section dimensions of the one-dimensional buffer
h the axial length of the one-dimensional buffer
4 the initial velocity of m
A0 amplitude and phase constants, respectively
@, J(Ebcjmh) or \J(E"(iw)bc/mh)

€ the maximum compressive engineering strain of the one-dimensional buffer
F..() the external force of the forced oscillation of m, F,,(f) = F, sin (wt)

@ the angular frequency of harmonic oscillation

p the mass density of the one-dimensional buffer

E*(iw) the uniaxial complex modulus of the one-dimensional buffer, E*(iw) = E’(iw)[l +i tan 8]
E’(iw)  the axial storage modulus

tan d the loss tangent

Q* J (pw’h?[E*(iw))

a (1+tan 6%)"*sin (6/2)

B (1 +tan 6% cos (6/2)

Leont time in which m contacts the buffer

H, the height from which the ball is dropped for the rebound test

v, the velocity with which the ball rebounds

H, the height to which the ball rebounds back

E@) the relaxation function of a three-element Maxwell model, E(t) = Eo+ E, e~

[U(s)] the Laplace transformation form of U(s)
ay, B, ko, ko ky ko, ks, ke, kq, 20, 2, 25 constants obtained by performing the inverse transformation of [U(s)]
R radius of the rigid sphere

G the relaxation function in shear of the elastic half-space

G(n the relaxation function in shear of the viscoelastic half-space, G({) = Go+G, e~
G'(iw)  the storage modulus in shear

J() the creep function in shear of the viscoelastic half-space, J(1) = 1/G,~J, e~

Ji G /(Go(Go+G)))

t Go/(t:(Go+G)))

v Poisson’s ratio

r(®) the radius of the contact area between the rigid sphere and the viscoelastic half-space
- the time both U(¢) and r(¢) reach the maximum values

(1) rit, () =r() for0<t()<t,, and t,<t

H mesh width of the Euler method

tand’®  (tan d)>

INTRODUCTION

The major applications of viscoelastic materials make use of their energy absorption
characteristics. The most common usage of these materials is in structures to damp unwanted

1313



1314 C. P. CueN and R. S, Lakss

acoustic or mechanical vibrations, to avoid environmental noise or vibration-induced
failure. Another use of viscoelastic materials is to reduce the impact force of incident mass
upon a buffer through the energy absorption characteristics. Viscoelastic polyurethanes
have been used as shock-absorbing inner soles for athletic shoes. Material properties in the
frequency range 1-100 Hz are relevant in this application. It has been suggested by Light
et al. (1980) and Voloshin and Wosk (1982) that shock-absorbing footwear may alleviate
symptoms of clinically degenerative joints. For the impact problem, both the frequency
characteristics and the transient characteristics of the viscoelastic materials are significant.
Attention must be given to the boundary contact condition and the relation between
elasticity and viscoelasticity. So far, most of the contact problems of elasticity and visco-
elasticity are related to the boundary condition problem. time-independent for elasticity
and time-dependent for viscoelasticity. Some results in this area are used to interpret the
ball rebound test to determine the loss tangent of viscoelastic materials. Measurements of
the coefficient of restitution of steel balls on plates of glass and plastics were made by Tillett
{1954) and found to be a function of the specimen’s viscoelastic properties. The coefficient
of restitution obtained experimentally was in agreement with that calculated from Zener’s
formulae (1941). Pao (1955) extended the Hertz theory of impact to the viscoelastic case.
Numerical calculations were carried out for some particular materials whose actual spectra
were replaced with more convenient line spectra. Flom (1960) presented the ball rebound
method, in which he measured the rebound height and time of impact of polymeric speci-
mens, from which the loss tangent and the equivalent frequency were reduced, as a special
case of ball free vibration. The penetration of a viscoelastic half-space by a rigid spherical
indenter was investigated by Hunter (1960) in a quasi-static approximation. The duration
of contact and coeflicient of restitution can therefore be estimated for *“‘glass-like™ materials.
Using data obtained from free torsional vibration experiments, the impact of a rigid sphere
onto a viscoelastic half-space was solved numerically by Calvit (1967). The rebound of a
steel ball from a block of polymer was therefore predicted for various temperatures.
However, no design aspects were emphasized by the authors mentioned above. Selection
of viscoelastic materials for impact absorption on the basis of their loss tangent still seems
to be beyond the research works available so far.

The objectives of the present analysis are to determine the optimal loss tangent for
impact absorption and to arrive at an improved interpretation scheme for the ball rebound
screening test for viscoelastic loss. We begin with the analytical method of one-dimensional
impact of a rigid object upon a viscoelastic layer, which is followed by more complex cases
for which numerical techniques are required.

ONE-DIMENSIONAL ELASTIC BUFFER

The massless, linearly elastic block buffer in one dimension is mechanically equivalent
to a spring. Consider, therefore, a one-dimensional mass—spring system. The mass m vibrates
so that its displacement is

U(t) = A sin (wot +6), (0

in which w, = \/(Ebc/mh), E is the axial modulus of the elastic block, b and c are its cross-
section dimensions, 4 is its axial length and A and 8 are amplitude and phase constants,
respectively, depending on the initial displacement and velocity of m.

Consider the impact of a mass m moving at velocity ¥ on a spring. Equation (1)
describes the motion of m following its contact with the spring at time ¢ = 0. The dis-
placement U of m is therefore

U@ = w—i sin (wo!) )
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and the impact force F is obtained to be
F(t) = mw,V sin (wg?). 3)
The impact force is linearly proportional to the deflection of the spring. or the dis-

placement of m. The maximum impact force F,, = V\/ (mEbc/h) for a maximum spring
deflection U, = V\/ (mh/Ebc) at t = m./(mh/Ebc)[2. Fy,, is related to Uy, by

Eb
Fmax = —_c Umax (4)
h
and
Fya, = Ebce, (5)

in which ¢ is the maximum compressive engineering strain of the spring. Providing the
maximum spring deflection is constrained, the minimum impact force is obtained with the
smallest value of E. A value of

_ my?
" behe?

(6)

is the optimal stiffness to minimize F,,.

ONE-DIMENSIONAL VISCOELASTIC BUFFER BASED ON FREE DECAY OSCILLATION

Consider the one-dimensional mass—viscoelastic buffer system. In order to investigate
the impact behavior in terms of the viscoelastic properties of the buffer directly, we approxi-
mate the impact as one half cycle of free decay oscillation. The governing equation for the
one-dimensional forced oscillation of a linearly viscoelastic block with an attached mass m
is similar to that given by Christensen (1982) for the torsional case, and is as follows:

cot (%) ()
o "

Fou(t) = U(D)bcpw?h 0

in which F,,(¢) is the external force [F,,(?) = F, sin (w?)], U(z) is the displacement of the
mass m, b and c are the cross-section dimensions of the viscoelastic buffer, 4 is its axial
length, p is its mass density,  is the angular frequency of harmonic oscillation, E*(iw) or
E’(iw)[1+ i tan §] is the uniaxial complex modulus, E’(iw) is the storage modulus, tan d is
the loss tangent, and Q* = ,/(pw?h*/E*(iw)). The lateral restrictions at the ends of the
buffer are neglected in eqn (7). This is considered appropriate since the analysis is on the
basis of a one-dimensional problem. Physically, the one-dimensional approximation is
appropriate for a stiff, flat-ended column, for a ribbed buffer composed of a series of such
columns, or for perfectly lubricated compression of a block.

Now suppose the mass of the buffer is much less than that of the impactor as a result
of a small density p or axial length 4. Then we can approximate Q* — 0, and therefore
cot (Q*) — 1/Q*. The buffer is therefore a massless viscoelastic spring and the induced
deflection and stress are uniform in the axial direction. Equation (7) then yields

2
Fuu ()~ UOE* (i) < = m 0. ®

The external force F(f) vanishes in the situation when the mass has struck the buffer
and is vibrating freely upon it. The impact, from contact to peak force, is one quarter of a
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cycle. The solution is then of the form
U(t) = A et 2=ddn, (9)
in which
wo = J(E'(imw)be/mh); o= (1+tand%) *sin (5/2): B = (1+tand?)'* cos (6/2);
and 4 and 8 are constants depending on the initial displacement and velocity of m. This
solution for free vibration of the mass—viscoelastic buffer system is identical to that for one-

dimensional impact of mass m on a viscoelastic buffer. Based on the initial condition the
displacement of m can be written

Uty = Eg; sin (Bw,f) ™ o (10)

in which ¥ is the initial velocity of moving mass m, and the contact of m and the buffer
again occurs at time ¢t = 0.
Accordingly, the force induced on m is

d*U(D)
dr?

F(y=m

= m———Vcao[[)’2 sin (Bwot) +2af cos (Bwet) —a® sin (Bwgt)] e~ *', an

B

By equating dU(7)/dr and dF(£)/dt to zeros, respectively, the maximum displacement
Uax and the maximum impact force F,, are derived in terms of the design parameters as

_ mh 1 ~tan /(22— 8/2)
Umax - V\/(E'(l&))b&‘) (1 +tan 52)l <€ (12)
at
n—3&
= 5 e
2(1 +tan 6%)"* cos (§> @o

and

Frax = V\/(mE’(liw)bc) (1+4tan §2)"4 g~ un G/2w2=312) 13
at

n—3d

é
2(1+tan 6%)"% cos (5) g

t =

fortand € 1.73, or

Fonas = 2V\/('"-—Ei%“’—)’—’f) (1+tan 6%)"* sin @) (14)

att =0, fortané > 1.73.
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It can be determined from eqn (12) that

mVih{ 1 ¥ I n 6 .
7z - —1an {(6: ) —d)
E'lio) = = (Umx) (+ano) (s

is the optimal stiffness if there is a limit Uy, on the maximum deflection. Substituting eqn
(15) in eqns (13) and (14), F,,,, can be obtained to be

2
Foue = 12 g te-29 (16)
fortan é < 1.73, or
mV? | [§ s
Frngy = 27— sin (i) g=n @DE2=02) an

for tan > 1.73. Differentiating eqns (13) and (16) with respect to J, the optimal loss
tangent tan & to minimize the impact force is determined to be 0.4 if the stiffness is held
constant and 1.1 if the stiffness is treated as a design variable. For tan § = 1.1 the optimal
value of E’(iw) is 24% of the value for the optimized elastic buffer, based on egn (15). The
resulting impact force is 52% of the value found in the optimized elastic buffer, based on
eqn (16).

As in the elastic case, Upay» Fmax and the optimal E’(iw) of the viscoelastic buffer are
proportional to the values of V./(mh/(E'(iw)bc)), Vi/(mE'(iw)be/h) and mV?/(bche?),
which are basically dependent on the design parameters.

Numerical values are assumed to provide numerical examples. An adaptation of the
values quoted by Burton (1984) for assessment of artificial sports surfaces is used. The
values are b=c¢ =150 mm; h = 50 mm; m = 5400 g; V = 6.26 m s™' (assume mass is
dropped from a height of 2 m). This was orginally a hollow metal ball with an accelerometer
inside. The approximation cot (Q*) — 1/Q* which was required to obtain the solutions was
checked with these values. It was found that the differences between both real and imaginary
parts of cot (Q*) and 1/Q* are within 10%. Results are shown in the following figures.
First, the loss tangent was varied and the stiffness of the material was adjusted so that the
maximum compression of the buffer was always 50%. Force vs deflection curves for
different loss tangents are given in Fig. 1. The maximum force Fy,, Vs tan d curve obtained
from eqns (16) and (17), as shown in Fig. 2, shows that the peak impact force is the smallest
when tan d = 1. If, however, the material stiffness £’ is kept constant, the maximum
compressive strain ¢ in the buffer during impact will decrease when the loss tangent of the
buffer increases. The impact force then becomes large for high values of the buffer loss
tangent, as is also shown in Fig. 2. As in the case of an elastic buffer, to minimize the impact
force, the thickness / is to be maximized. Equations (13) and (14) imply that F,, is
proportional to the inverse of the square root of 4. For example, a 50% increase in thickness
results in an 18% decrease in peak force.

With the solutions of U(?) and F(f) given above, tan é of viscoelastic materials can be
determined from the coefficient of restitution extracted from the one-dimensional rebound
test. A mass dropped from height H, on the tested materials at 7 = 0 rebounds back with
velocity ¥, at time #,,, and back to height H,. The contact time ¢, is obtained by equating
F(b) to zero

]

(1+tan §2)"* cos (g)wo

(18)

Leom =

with w, = /(Ebc/mb).
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10000

Impact force ( N )

Deflection ( % )

Fig. 1. Impact force vs deflection curves for different loss tangents, one-dimensional viscoelastic
buffer based on free decay oscillation, £’ adjusted so as to obtain ¢ = 50%. [J: tand = 0.01;
M:tand =05, :tand=1; @ :tanJ = 5.

40000
Z 30000
Py
o
S
g 20000
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g 10000 -
|
0 e e — ey mm —
.001 .01 A 1 10 100

tan §

Fig. 2. Maximum impact force of one-dimensional viscoelastic buffer based on free decay oscillation.
[: E’ adjusted so as to obtain the maximum compressive strain ¢ = 50%; ll: £' = 0.75 MPa, ¢
varied.

V', is obtained by substituting ., in the time derivative of U(z). Tan J is therefore
related to Hy and H, by

H ]
il_l = (cos 6+tan§sin 6) g2 (42 —5) (19)
0

If tan 6 is small, the relation above can be approximated to be

m (He
IlHl

tand = ———— (20)
T
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001 v Y ~r T v | e Y v

0 20 40 80 80 100
HiMo (%)

Fig. 3. Tan § obtained from the ball rebound test. {]: exact value by one-dimensional viscoelastic
buffer based on free decay oscillation; ¢ : approximated by tan é = In (Ho/H,)/x.

Figure 3 shows the analytical prediction of tan § from assumed rebound height ratios
H\H,. The much simpler approximation formula of eqn (20) is applicable for tan é < 0.2.
This form is the one quoted by Flom (1960) and Calvit (1967); it is an approximation valid
for small loss.

ONE-DIMENSIONAL VISCOELASTIC BUFFER WITH THE TRANSIENT TERM CONSIDERED

For the problems considered in the previous section, the starting transients were
neglected during the impact such that in the analysis only free decay terms were considered.
The same problems will now be analyzed with the transient starting effects due to the
viscoelasticity of the buffer material included. An integral transform method is used for
obtaining solutions.

For the sake of simplicity and feasibility, the solutions are obtained for a linearly
viscoelastic material represented by a three-element model described by the first two terms
of the generalized Maxwell model,

E(t)=E,+E, a=th +E, e g .- +E, e,
It is necessary in this case to assume a particular type of material since the transient contains

a distribution of frequencies. Consequently, tan 4 over a range of frequencies will contribute.
The relaxation function, the storage modulus, and the loss tangent are given by

E(®)=Ey+E, e D
©?
E'(w) = Ey+E, "*——-——1— (22)
2y
(“’ * :%)
and
tan {w) = @ E, , (23)

1
t,(E0+E,)w2+E0;5
H

SAS 26:12-8
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in which w is the frequency of harmonic oscillation. £ and tan é are functions of w.
Equations (21)-(23) represent a single discrete relaxation time in the spectrum. In this
model, the values of E,, E|, and ¢, were adjusted to obtain the desired value of tan d at the
principal frequency associated with the impact. This frequency was derived from the contact
time between the mass and the buffer. In view of this procedure, the single spectral line
chosen is the most significant one in the spectrum.

For a one-dimensional impact, Newton’s second law applied to a viscoelastic material
is given by

U@ be " dU(z)

P A R Gt

dz. (24)

Taking the Laplace transformation of eqn (24) with the same initial conditions as
applied in the previous sections, we can obtain the Laplace transformation form

_P9
[U@s)] = 00)

I
V<s+ —)
b

L be(Eo+Ey)  beEs’
t hm hm

(25)

The inverse transformation of eqn (25) yields the solution
U(t) = Vik, & +k, e* (kysin (B,8)+k,4 cos (B8,0)}, (26)
which is a decaying sinusoidal function for low loss materials, or
U(t) = Viks €' + kg €' +k, &7}, @27

which is a decaying exponential function for high loss materials. In these expressions, V is

the initial velocity of the moving mass m; z,, a,+if, and x,—if, or zy, z, and -, are roots

of the third order polynomial equation Q(s) and are obtained numerically; k,, k,, k3, and

k4 are functions of ¢, zy, «; and B, ; and ks, k¢ and &, are functions of ¢,, z,, =, and z,.
Accordingly, the impact force is obtained as

drU(@p

dr?
= —mV{z3k, ™ +kya} e*’ (k; sin (B1£)+k4 cos (B10)+ 2k, By e’ (ks cos (By1)
—kysin (B,0))+k, B} €' (—k;sin (B,7)—k, cos (B11))} (28)

Ft)=—m

from eqn (26), or
F(t) = —mV{zdks e’ + 2tk &' + 23k, €7} 29

from eqn (27).
We now reconsider the problem as an elastic case. Equation (24) will reduce directly
to

d2Uu(» _ EbcU(1)

= 0
dr? h (30)

which is exactly the same as obtained in the previous section. It is important to observe
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that the starting transients only exist in the viscoelastic case and therefore the behavior of
the elastic buffer is just the same as described before.

The relations between the design parameters and U, and F,,,, are no longer expressed
explicitly. Consequently, a numerical method is used to obtain the solutions. Numerical
examples are investigated with the same parameters as before.

The stiffness and the loss tangent of the material are simultaneously varied to obtain
a 50% compressive deformation of the buffer. Force vs deflection curves for different loss
tangents obtained by this analysis are given in Fig. 4. Regardless of the value of tan 4, the
impact force always vanishes at t = 0. However, the peak of impact force occurs at an
earlier time when tan § increases. The maximum impact force is minimized when tan ¢ is
1-2 if the maximum compressive strain ¢ is held at 50%, as shown in Fig. 5. The effect of
the transient term is as follows. With the transient included, the optimal material properties
are tan § = | and a stiffness £ which is 35% of the value for the best elastic buffer; the
peak impact force Fp,, is 69% of that for the elastic buffer. The solution neglecting the

10000

impact force ( N )

60

Daeflection { % )

Fig. 4. Impact force vs deflection curves for different loss tangents, one-dimensional viscoelastic
buffer with the transient term considered, £’ adjusted so as to obtain £¢=50%. A: elastic;
A:tand=034; C:tand=1;@:tand=17.

50000

Maximum impact force { N )

10000 ~

0 g S ——
1

vy
.001 .01 .1
tand

Fig. 5. Maximum impact force of one-dimensional viscoelastic buffer with the transient term
considered. A: E’ adjusted so as to obtain the maximum compressive strain, &= 50%
A : E' =0.75MPa, ¢ varied.
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HiMo (%)
Fig. 6. Tan 3 obtained from the ball rebound test. A ; exact value by one-dimensional viscoelastic

buffer with the transient term considered, £’ adjusted so as to obtaine = 50%; A E' = 0.75 MPa,
¢ varied; @ : approximated by tan & = In (H/H ))/n.

transient also results in tan 6 = 1, but E" is 24% of that of the elastic buffer and the peak
force is 52% of that for the elastic buffer. Therefore, neglect of the transient leads to an
overly optimistic design. The impact force is recalculated assuming no variation in the
stiffness E”. This gives a shallower minimum in the force vs loss curve, and a substantial
increase in force for large loss. This comparison, also shown in Fig. 5, is similar to that in
Fig. 2, which was obtained by a more simple analysis.

As for the rebound test, the relation between tan ¢ and the rebound height ratio H,/H,
according to the present analysis is given in Fig. 6. Observe that the simple approximation
formula underestimates the loss tangent.

IMPACT OF A RIGID SPHERE ONTO A VISCOELASTIC HALF-SPACE

Earlier analyses were given for spatially one-dimensional solutions of impact of a mass
upon a viscoelastic buffer of finite thickness. As an extension of viscoelastic impact problems,
the penetration of a viscoelastic half-space by a rigid spherical indenter is investigated. The
purpose is to evaluate the effect of the spatially nonuniform stress distribution and its time
evolution upon the viscoelastic impact. However, for the design consideration, the width
and thickness of the buffer must be sufficiently large that the penetration of the indenter
onto the buffer is limited to a local area since the buffer is now assumed to be a half-space.
Again, the viscoelastic behavior is simplified to be a standard linear solid with a single
relaxation time as in the previous section. Therefore, the transient term is also included.

If a ball of mass m and radius R is dropped onto a viscoelastic half-space whose
relaxation and creep functions in shear are given by G{¢) and J(1), respectively, the governing
equations are given by Hunter (1960} as

a*U() -8RV [
drr T 3(1-v) b

G(t—~1) AU (1)) 3n

and

(0
U = X (32)
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when the ball loads (0 < r < 1.}, and

U@ -8 f’r‘"

di? = 3(1-v)R G(I“t) d(l‘a(‘t)) (33)

it}

and

Y 2
o 1 d f G —) d’dft) dr
r (1)
lM

when the ball rebounds (¢, < #), in which v is Poisson’s ratio and is considered to be 0.3,
constant in time, r(¢) is the radius of contact area, ¢, is the time at which both U(¢) and
r(t) reach the maximum values, and r(s,()) = r(f) for 0 < t,() < tn,and 1, < 1.

First start with the elastic solutions. Equation (31) is replaced by

d*u
F() = -m_—d-t-z(i)

8RVZGU (1)

-y 33)

in which G is the elastic shear modulus. Integrating eqn (35), the displacement of the ball
U(1) is obtained to be

15)215 (1=’ m** (V2 — (dU0)/d)*)** 36)

v = (ﬁ RBGH s

in which V is the initial velocity of m. Equating dU(#)/d¢ to zero at ¢ = ¢, the maximum
displacement U,,,, and the maximum impact force Fp,, are determined to be

15 2/ 5 (l“v)215m2i5V4{5
Unnax = (ﬁ) ! 37

and

$RV*GUYZ

Fous = 3055

15 3/58 3!5V6!5R!/5 2/s
,..( ) e ¢ (38)

32 31—

respectively. It is clear that G = (15/32)(1 —v)mV*/(R"*(Upey) ™) will minimize the impact
force if there is an upper bound on U,,,.

Now consider the viscoelastic case. For 0 < 7 < ¢,,, performing a Laplace transform
and its inverse transform on eqn (31), with G(2) replaced by Go+ G, e~""1, gives

U@ 1 d2U(@) , 4R v, QU@ . 8R?G,
vm(G°+G’)U @ dt +3(l-—v)m:,

da’ ¢ df T (-w U¥(5) = 0. (39)

Equation (39) can be solved using a single-step Euler method to the third order
differentiation of U(#). The accuracy of the Euler method depends on the mesh width H
in the forward difference integration. An elastic impact problem described by the
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ordinary differential eqn (36) was solved analytically to check on the sensitivity of the
Euler method to the mesh width H. It was found that good agreement was obtained
when H = 0.00001 s. It should be pointed out that no effort was made to seek the generally
optimal time interval for the numerical method. # = 0.00001 s was thus used in this analysis
for convenience.

Solutions for eqns (33) and (34), which are the governing equations of ball rebound
for ¢, < ¢, are more complicated. To apply the numerical method, we first seek a means to
break up the term with the double integral and derivatives in eqn (34). Following integration
by parts, eqns (34) and (33) become

i 1 J o
U = 'Tf) -z {GOJ,(I — TNy ()~ G, [—" e f( e (1) dr
1,0}

J ! .
+Glt_le—1/12 et/lz(l_e(—t+t,(r)),1,)r2(t) dr
2 .

S (e [ :
e —le_[”IZJ\ el‘lz ehﬁJ‘ et,‘!|r-(r) d‘r dt/}1 (40)

1
1t ()

in which J, = G /(Go(Go+G))) and t; = Go/(t1(Go+ G ) with J(¢) = 1/Gy—J, e "'z, and

U@ -3 {

G 1,(1) }
= 3 (—t+t, 00ty W3y 1 L~y Tty 3
T 30 —vmR Gor’(1)+G, e r’() e J; e ri(t) dr} . 41

t

It is clear that U(¢) cannot be solved explicitly since the unknown function ¢,(¢) is
involved. However, a solution can be obtained by an iteration process as described by
Calvit (1967). The solutions can be obtained to any time ¢ > t,, up to the point where the
ball separates from the viscoelastic half-space.

Numerical values adapted from Burton (1984) are again assumed in order to investigate
the behavior of the impact system. However, the hollow indenter of m = 5400 gand R = 110
mm is dropped from a lower height of 200 mm to result in a small deformation as required.
Curves of force vs deflection and radius of contact vs deflection are shown in Figs 7 and 8,
respectively. It is worth mentioning that the indenter has the same contact radius r(r) at a

Impact force ( N )

[+} 5 10 15 20
Deflection { mm )
Fig. 7. Impact force vs deflection curves for different loss tangents, a rigid sphere onto a viscoelastic

half-space, G’ adjusted so as to obtain Up,, = 15 mm. O : elastic; @ : tan 8=033;0:tand =2.3;
& :tand = 10.
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Radius of contact { mm }

10 -

b
0 v T v r v Y v
0 5 10 is 20

Deflection ( mm )

Fig. 8. Radius of contact between the rigid sphere and a viscoelastic half-space of different loss
tangents. O : loading curve of different loss tangent half-space and rebound curve for elastic half-
space; @ : rebound curve;tand = 0.33; A:tand =0.87; O tand > 2.3,

certain U(?) for elastic and viscoelastic half-spaces during the loading, and a smaller r(z)
for a higher loss half-space during the rebounding.

As shown in Fig. 9, the peak impact force reaches a minimum value when tan é is
1-2 if G’ is kept at 0.77 MPa and tan ¢ is varied. The peak impact force becomes small
for high values of tan J up to 10 if G’ is adjusted so that the maximum deflection is always
15 mm. The optimal values of G’ are found to be 48 and 4% of the value of the optimal
elastic half-space for tan é equal to 1 and 10, respectively. However, it is worth noting
that the contact area varies during the impact. A small peak force still means a high stress
level over the contact area when tan § is large. Figure 10 shows the comparisons between
R = 110 mm and R = 60 mm when G’ is kept constant at 0.77 MPa. The peak impact force
decreases if the radius of the ball decreases. In any case, a smaller ball will cause a larger
value of maximum deflection.
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Fig. 9. Maximum impact force of a rigid sphere onto a viscoelastic half-space. O : G” adjusted so
as to obtain Uy, = 15mm; @ : G’ = 0.77 MPa, U, varied.
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Fig. 10. Maximum impact force of a rigid sphere onto a viscoelastic half-space, G = 0.77 MPa,
Uux varied. O : radius of the sphere R = 110 mm; @ : R = 60 mm.
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Fig. 11. Tané obtained from the ball rebound test. O: exact value by a rigid sphere onto a
viscoelastic half-space, G” adjusted so as to obtain U, = 15mm; @: G’ = 0.77 MPa, U, varied;
# : approximated by tan 8 = In (Hy/H )/,

As for the analysis of the ball rebound test, the loss tangent predicted from the
coefficient of restitution is somewhat greater than that from the elementary formula, eqn
(20), as shown in Fig. 11.

A synopsis of the results for different assumed conditions is given in Fig. 12 for impact
force, and in Fig. 13 for rebound restitution vs loss tangent.

DISCUSSION

The application of linearly viscoelastic materials to the reduction of impact force has
been considered. Solution of the material design problem for a one-dimensional flat-ended
impactor yields an optimum loss tangent of approximately one. Loss tangents of this
magnitude are available in a variety of polymers as described by Ferry (1970). Elastomers
with high loss over frequencies from 10 to 1000 Hz were characterized by Shipkowitz ez al.
(1988). We therefore view the optimal material properties as physically realizable. If material
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Fig. 12. Comparison of maximum impact force obtained from different considerations, ball dropped

from a height of 200 mm. O : spherical indenter, G’ varied, U, = 15 mm; {J: one-dimensional,

free decay oscillation, £’ varied, Uy = 15mm; A : one-dimensional, with transient term, £ varied,
Upax = 15 mm.
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Fig. 13. Tan J obtained from different considerations, ball dropped from a height of 200 mm.

O spherical indenter, G’ varied, U,,, = 15 mm; [J: one-dimensional, free decay oscillation,

E’ varied, U, = 15 mm; A: one-dimensional, with transient term, E’ varied, U, = 15 mm;
& : approximated by tan d = In (Hy/H\)/=.

stiffness as £’ is also included as a design variable, the optimum stiffness is less than that
of an elastic buffer by a factor of three to four, and reductions in peak force approaching
a factor of two are possible, in comparison with an elastic buffer of the same geometry.
The conclusion is thus far independent of the degree of sophistication of the mathematical
model, so that further refinements, such as inclusion of multiple relaxation peaks, are
unlikely to be productive. In the case of a spherical indenter, the optimal loss tangent is
considerably greater, of the order of 10. This difference is attributed to the geometrically
nonlinear nature of this problem, as indicated by the fact that the force—displacement curve
for an elastic material is concave up (Fig. 7). This type of nonlinearity is unfavorable from
the point of view of minimizing the peak force for a given amount of energy (area under
the curve). Consequently, more loss is needed than in the case of a flat indenter. By contrast,
the material nonlinearity (which also has a geometrical cause) in foams is of the opposite



1328 C. P. Cue~ and R, S. Lakss

nature, as indicated by Gibson and Ashby (1988). The appropriate foam can also reduce
impact force by a factor of nearly two. Foams have the advantage of light weight and the
disadvantage of “bottoming out” under a force greater than the value designed for, as well
as a rebound effect not seen in highly viscoelastic materials. However, viscoelastic materials
of very high loss tend to be temperature sensitive. As for three-dimensional aspects, we
observe that elastomers, whether they be highly viscoelastic or not, have a Poisson’s ratio
very close to 0.5. Consequently, a ribbed design is called for in the case of a thin buffer, to
allow the material to expand laterally when squeezed. Finally, in the case of the ball rebound
test, we remark that the test would be difficult to use for loss tangents exceeding two as a
result of the extreme steepness of the curve in Fig. 11.

CONCLUSIONS

(1) For an elastic buffer, the impact force is minimized by a buffer which is as thick
as possible and which has an appropriate Young’s modulus.

(2) Impact force is minimized by a flat-surface viscoelastic buffer with a loss tangent
near one.

(3) To achieve significant force reduction of a factor of two in comparison with an
elastic material, the Young’s modulus of the viscoelastic buffer must be smaller by
a factor of about four than the optimum for an elastic buffer.

(4) The optimum material properties of the viscoelastic impact absorber depend upon
the shape of the impactor. For a spherical indenter on a viscoelastic substrate, the
impact force is minimized for a substrate with a loss tangent of 10 or greater and
a stiffness smaller by a factor of about 25 in comparison with the elastic case.

(5) As for the ball rebound method for screening materials for viscoelastic loss, the
formula given by Flom (1960) and Calvit (1967) is seen to be an approximation,
valid for small loss. We present a more sophisticated interpretation scheme, valid
for high loss materials.
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